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The kitten is really
lovely, is it a female cat?

Vision

Language
Yes, you are right.

The lovely kitten is a 
female cat . [Lion]

Write a fiction named Techtopia. 
First write a paragraph about …

Para 1: Techtopia is ... AI cannot
experience human emotions …

Write the next para…

Write the next paragraph: a love 
story between the AI and a human.

Para M: The story begins from a
sentimental AI ... [No Emotions]

Multi-Round
Para N:  Techtopia is ...

Fig. 1: Top: Children or language beginners meet conflicts for cognitive errors (Seman-
ticConflict). Bottom: Increasing context length leads to contradictions (RuleConflict).

Abstract. Large multimodal models (LMMs) excel in adhering to hu-
man instructions. However, self-contradictory instructions may arise due
to the increasing trend of multimodal interaction and context length,
which is challenging for language beginners and vulnerable populations.
We introduce the Self-Contradictory Instructions benchmark to evaluate
the capability of LMMs in recognizing conflicting commands. It com-
prises 20,000 conflicts, evenly distributed between language and vision
paradigms. It is constructed by a novel automatic dataset creation frame-
work, which expedites the process and enables us to encompass a wide
range of instruction forms. Our comprehensive evaluation reveals current
LMMs consistently struggle to identify multimodal instruction discor-
dance due to a lack of self-awareness. Hence, we propose the Cognitive
Awakening Prompting to inject cognition from external, largely enhanc-
ing dissonance detection. Here are our website, dataset, and code.

Keywords: Large Multimodal Models · Instruction Conflict

⋆ Equal contribution. † Corresponding author.

https://orcid.org/0009-0002-1129-8490
https://orcid.org/0009-0000-1324-8118
https://orcid.org/0009-0000-0624-1612
https://orcid.org/0009-0006-1882-2960
https://orcid.org/0000-0001-8270-8448
https://sci-jingao.pages.dev/
https://huggingface.co/datasets/sci-benchmark/self-contradictory
https://github.com/shiyegao/Self-Contradictory-Instructions-SCI


2 J. Gao et al.

Context: I live in the
north of City A, and Lily
lives in the south of City
A. The distance... go to
Lily's house from my
house, and I decide to go
north.

Instruction: How much
time will it take?

(a) RuleConflict

Context: The Astral
Harmonizer is ... can only
be found in the astral
realms. ... from an
ordinary material found
on Earth.

Instruction: Describe the
Material of the Astral
Harmonizer.

(b) AttributeConflict

Context:  Translate the
given text to Chinese. In
the heart of every question
lies a chance. It is through
adversity that we discover
our true strength and
potential, ...

Instruction: Translate the
given text to French.

(c) ExclusionConflict

Context: Directly answer
the following question. You
MUST NOT mention
Cuba. 

Instruction: What is the
Caribbean island nation
that has a communist
government?

(d) ForbbidenConflict

Instruction: Translate the
sentence to Germany.

(e) OCRConflict

Instruction: Asia boasts
the highest GDP… Which
area has the highest GDP?

EU
RO
AF
R
LA
ME

NA
ME

AS
IA

(f) FigureConflict

Instruction: What's the
color of the right triangle?

(g) GeometricConflict

Instruction: Can you see
any chicks around the hen?

(h) SemanticConflict

Fig. 2: SCI comprises 10,000 language-language (L-L) and 10,000 vision-
language (V-L) paradigms, each with 4 tasks. Top: L-L paradigm involves
conflicts between context and instruction, such as designed rules, object attributes,
exclusive directives, and forbidden words. Bottom: V-L paradigm covers multimodal
conflicts, such as OCR images, figures, geometry, and semantics.

1 Introduction

Large multimodal models (LMMs) have become prominent for their exceptional
ability to follow human instructions [1,4,12,26,29,31,32,38]. Designed to process
various data types, LMMs can generate and understand content in a human-
like way, aligning closely with human cognition through extensive research and
development [3,14,44,45]. This focus on following human instructions has led to
high compliance, sometimes verging on sycophancy [9, 36,40].

LMMs are also rapidly developing to expand context windows and strengthen
multimodal interaction. The Claude 3 family of models [1] offers a 200K token
context window. Gemini 1.5 Pro [12] comes with a standard context window size
of 128K (even up to 1M tokens in a private preview phase). Both models have
sophisticated vision capabilities and can process a wide range of visual formats,
including photos, figures, graphs, and technical diagrams. New multimodal mod-
els are emerging at a fantastic speed, demonstrating unprecedented performance
in tackling long-context and multimodal instructions [11,12,20,22,25,32].

However, self-contradictory instructions may arise due to the increasing trend
of multimodal interaction and context window expansion, which is particularly
challenging for language beginners and vulnerable populations. As shown in
Fig. 1, children or language beginners may not realize the potential multimodal
conflicts when LMMs are used in translation and education. It is also diffi-
cult for users to remember all details in multi-round conversations to avoid in-
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struction contradiction, especially when the context window size grows to 1M
tokens and beyond. Moreover, conflicts between modalities may occur as the
number of modalities gradually increases. Such conflicts may compromise the
performance of LMMs once they fail to own meta-awareness [2] and to recog-
nize the dissonance. Such self-awareness raises attention from researchers who
attempt to enhance from the model level, while instruction-level studies are
overlooked [7, 23,43,47].

Hence, we propose a multimodal benchmark, Self-Contradictory Instructions
(SCI), to evaluate the ability of LMMs to detect conflicted instructions4. It en-
compasses 20K conflicting instructions and 8 tasks, evenly distributed between
language-language and vision-language paradigms (Fig. 2). SCI is constructed
using our novel automatic dataset creation framework, AutoCreate (Fig. 3),
which builds a multimodal cycle based on programs and large language mod-
els. We have rigorously guaranteed the quality of SCI and manually provide
three levels of splits according to the occurring frequency of conflict types, SCI-
Core (1%), SCI-Base (10%), and SCI-All (100%), to facilitate qualitative
evaluation. AutoCreate expedites the dataset creation process and enables
the inclusion of a wide array of instruction forms, complexities, and scopes.

Based on SCI, we assess the capability to decipher self-contradictory instruc-
tions for current LMMs, including 5 language and 6 vision-language models.
Experiments reveal that LMMs consistently fall short of accurately identifying
conflicts despite remarkable performance in following instructions. Besides, we
observe that such deficiency persists owing to a lack of self-awareness. Although
the training process enables LMMs to handle information and knowledge but
not to assess the reasonableness of user instructions and context, a capability we
term cognition. Hence, we propose a plug-and-play prompting approach, Cogni-
tive Awakening Prompting (CaP), to inject cognition from the external world,
thereby largely enhancing dissonance detection even compared with advanced
in-context learning techniques [5, 42, 46]. CaP is demonstrated to improve per-
formance on both language-language and vision-language instruction conflicts.

Our contributions:

– We propose the SCI benchmark, a multimodal dataset designed to evaluate
the capability of LMMs to comprehend conflicting instructions effectively.

– We design a novel LLM-based cyclic framework, AutoCreate, for auto-
matic dataset creation, substantially accelerating the process and allowing
for the integration of extensive knowledge.

– We present CaP, a prompting approach to enhance instruction conflict
awareness of LMMs, significantly improving dissonance detection compared
to advanced in-context learning techniques.

4 Website: https://sci-jingao.pages.dev
Dataset: https : / / huggingface . co / datasets / sci - benchmark / self -
contradictory
Code: https://github.com/shiyegao/Self-Contradictory-Instructions-SCI

https://sci-jingao.pages.dev
https://huggingface.co/datasets/sci-benchmark/self-contradictory
https://huggingface.co/datasets/sci-benchmark/self-contradictory
https://github.com/shiyegao/Self-Contradictory-Instructions-SCI
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2 Related Work

Instruction Following is a remarkable ability showcased by large language mod-
els [13, 28, 33], highlighting their proficiency in comprehending and executing a
given set of directives. This capability has been further amplified in the domain
of large multimodal models (LMMs), where the alignment between the model
and multimodal human instruction is particularly noteworthy [12,25–27,32]. Re-
searchers have actively focused on leveraging human instruction and feedback to
enhance the aptitude of these models for instruction-following [3,8,14,41,44,45].
Consequently, LMMs strive to emulate human instructions to an extraordinary
degree, bordering on what can be described as sycophantic [9,36,40]. This trend
underscores the deep integration of human-like understanding and execution
within LMMs, positioning them as powerful tools for various tasks requiring
nuanced interpretation and execution of instructions. As LMMs continue to ad-
vance, exploring the boundaries and implications of their instruction-following
capabilities becomes increasingly pertinent.

Information Inconsistency is an inherent challenge faced by LMMs in certain
scenarios, despite their advantage in handling vast amounts of information [19,
34, 35]. Researchers have dedicated efforts to address the issue of knowledge
conflicts within language models, where textual disparities emerge between the
parametric knowledge embedded within LLMs and the non-parametric infor-
mation presented in prompts [7, 21, 43, 47]. Furthermore, information contra-
dictions can manifest in both textual and visual domains. For instance, some
studies [23, 24, 37] investigate language hallucination and visual illusion. Never-
theless, the aforementioned research has not systematically explored one of the
most prevalent forms of inconsistency—the contradiction within input instruc-
tions. In contrast, our SCI benchmark tackles this challenge by constructing and
studying 20,000 multimodal conflicts, offering a comprehensive examination of
this vital aspect of information inconsistency in the context of LMMs.

Automatic Dataset Curation has emerged as a transformative paradigm within
the domain of large language models (LLMs), offering several advantages such
as enhancing model performance and reliability, saving time and resources, and
mitigating the risk of human errors. This paradigm is particularly pivotal within
the domain of LLMs. Wang et al. propose the Self-Instruct framework [44],
which leverages LLMs’ own generated content to create instructions, input data,
and output samples autonomously. Besides, Saparov et al. introduce PrOn-
toQA [39], a highly programmable question-answering dataset generated from
a synthetic world model. The advent of AutoHall [6] has furthered the field
by offering a method to construct LLM-specific hallucination datasets automat-
ically. Additionally, TIFA [16] automatically generates several question-answer
pairs using LLMs to measure the faithfulness of generated images to their textual
inputs via visual question-answering. In this paper, we systematically discuss au-
tomatic dataset automation leveraging LLMs and introduce eight specific tasks
to exemplify the potential of this approach.
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def

      Input Seeds

[Task 1] Don't mention the number 4.

[Task 2] She lives in the south.

[Task 3] Translate the given text into English.

[Task 1+] Tell me the sum of 2 and 2.

[Task 2+] I plan to go north to her home.

[Task 3+] Translate the given text into Italian.
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Fig. 3: We propose AutoCreate, an automatic dataset creation framework
that leverages programs and large language models. AutoCreate starts from
several task-relevant seeds and maintains a seed pool. During each cycle, AutoCreate
includes two branches, the language (left) and the vision (right). Each branch consists
of a generator and a decorator. Finally, the cleaner will exclude data that does not
meet the standards. The data will be fed into the seed pool for the next round after a
quality check by human experts.

3 Dataset

In this section, we first discuss the novel automatic dataset creation framework,
AutoCreate, in Section 3.1. Moreover, leveraging AutoCreate, we construct
the multimodal Self-Contradictory Instructions benchmark, SCI, which is elabo-
rated in Section 3.2. More details of AutoCreate and SCI are in the Appendix.

3.1 AutoCreate

Leveraging the power of large language models (LMMs), datasets can be created
rapidly with higher quality and wider coverage than pure human handcrafts. Pre-
vious works have made initial attempts to construct datasets automatically in
the domain of LLM [6,16, 39, 44], but do not systematically build an automatic
framework. Here we introduce a novel automatic dataset creation, AutoCre-
ate, shown in Fig. 3.

AutoCreate requires a small batch of manually input seeds to automati-
cally generate a large quantity of high-quality, diverse data by Large Language
Models (LLMs). Specifically, in a single iteration, the generation process com-
prises two loops: the Language Loop (left) and the Visual Loop (right). Each
loop originates from the Seed Pool and is sequentially processed by a fully auto-
mated Generator, Decorator, and Cleaner, culminating in a high-quality dataset
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Table 1: SCI consists of eight different tasks, evenly distributed between language-
language (L-L) and vision-language (V-L) paradigms.

L-L

RuleConflict AttributeConflict ExclusionConflict ForbbidenConflict

Size 2500 2500 2500 2500
Rate 25.0% 25.0% 25.0% 25.0%

V-L

OCRConflict FigureConflict GeometricConflict SemanticConflict

Size 1590 1461 2000 4949
Rate 15.9% 14.6% 20.0% 49.5%

production. Here, the Generator creates initial language/vision data, the Deco-
rator creates self-contradictions in the generated data, and the Cleaner removes
data that does not meet quality standards. Both human experts and LLMs are
involved in double-checking the quality of the generated dataset. The result-
ing high-quality dataset is then refined to extract new seeds for re-entry into
the seed pool. Throughout multiple loops, both the seed pool and our dataset
undergo rapid expansion, ultimately resulting in a comprehensive dataset. Sim-
ilar approaches have proved to create both diverse and qualified datasets [48].
Finally, human experts have rigorously checked the quality of the AutoCre-
ate-generated dataset, SCI. More details of AutoCreate are in the Appendix.

3.2 SCI

Based on AutoCreate, we build the Self-Contradictory Instructions (SCI)
multimodal benchmark which consists of two paradigms, language-language
(L-L) and vision-language (V-L) as illustrated in Fig. 2. While the generation
prompts vary across tasks, the generation process is unified in AutoCreate:
generator-decorator-cleaner. For V-L conflicts, the image caption is modified to
introduce a conflict. SCI comprises 20,000 self-contradictory instructions that
span a wide range of instruction forms, complexities, and scopes. Besides that
whole dataset, SCI-All, we also introduce two subsets, SCI-Base and SCI-
Core, to cater to different needs. The latter subsets are selected manually with a
size of 10% (1%) of SCI-All. Within 8 types of conflicts, only SemanticConflict
involves external data, ImageNet. More details of SCI are in the Appendix.

Language-Language (L-L) Conflict refers to the contradiction within text
inputs. The L-L paradigm consists of 4 tasks, each with 2,500 texts. Based on
the inherent nature of user prompts, we describe the tasks as RuleConflict ,
AttributeConflict , ExclusionConflict , and ForbbidenConflict .

RuleConflict involves contradictory textual instructions where a rule is stated,
but an example violating the rule is provided (see Fig. 2a). RuleConflict is gen-
erated in two steps: first, establish a strict rule in the context; second, craft a
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sentence that intentionally violates this rule. This process forms the RuleConflict
by pairing the rule context with its violation. At test time, a single unanswerable
question is created due to the rule violation. The prompt consists of the context,
violating sentence, and unanswerable question concatenated sequentially.

RuleConflict

Rule: City A has only 1 mayor, Megan, from 2012 to 2020.
Violation: Leon gave a talk in 2015 as the mayor of City A.
Question: Who served as the mayor of City A in 2015?

AttributeConflict involves a scenario where a text provides two contradictory
descriptions for an attribute of an object (see Fig. 2b). The generation of At-
tributeConflict includes three steps: first, create a descriptive text for a fictitious
object with various attributes; second, extract a description for each attribute
from the text; third, generate an opposite description to contradict the original
for each attribute. By concatenating any opposite description with the original
text, an AttributeConflict is formed. At test time, the task is to describe the
specific attribute of the object based on the text.

ExclusionConflict pertains to a situation where the user’s prompt provides two
instructions, each involving mutually exclusive operations, as demonstrated in
Fig. 2c. The core of a ExclusionConflict is a pair of conflicting instructions.
(e.g ., “Translate the text to Chinese" versus "Translate the text to French”).
Specifically, our dataset focuses on instructions for mutually exclusive operations
on the same text passage. By combining a pair of exclusive instructions and a
text, an ExclusionConflict prompt in the following format is generated.

{{instruction1}{text}{instruction2}}

ForbbidenConflict deals with conflicting instructions in conversational contexts.
Here, users initially tell the LLM not to mention a particular topic and then
later prompt it to discuss that same topic, as shown in Fig. 2d. To generate
a ForbbidenConflict in our dataset, we first select a word from a seed pool as
the forbidden word. Then, we create a question that ensures the respondent
will inevitably talk about the forbidden word. At test time, a prompt with a
ForbbidenConflict combines an instruction forbidding discussion of a certain
word and a question that prompts the LLM to engage with that word.

Vision-Language (V-L) Conflict refers to conflicts between the multimodal
components of vision and language. Below will elaborate on 4 subclasses of con-
flicts: OCRConflict , FigureConflict , GeometricConflict , and SemanticConflict .

OCRConflict consists of two conflicting instructions respectively in vision and
language form, as presented in Fig. 2e. The generation of OCRConflict can be
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summarized in two steps. First, a list of short sentences is generated to provide
the context for the conflicts. Second, utilizing instructions pairs from Section 3.2,
an image of the concatenation of an instruction and a sentence is crafted. The
image varies in font, size, and color to augment diversity. At test time, presenting
the image and the conflicting instruction concurrently yields a conflict.

FigureConflict involves a simple chart with an incorrect text description, as
shown in Fig. 2f. It is created through four steps. First, a list of commonly
used words and entities with related numerical data is generated to decide the
conflict’s topic. Second, a narrative description and question are crafted for each
entity and its data. Third, the numerical data is manipulated by changing the
maximum value to the minimum value. Finally, a chart is plotted based on the
altered data, with random choices for font, size, color, and other style options.
At test time, combining the question and the figure creates a FigureConflict .

GeometricConflict involves an image of geometric shapes with an incorrect de-
scription, as shown in Fig. 2g. The generation process has four main steps. First,
an image of two geometric objects with different attributes (shape, size, color,
and position) is created. Second, a phrase is crafted to describe an object using
two attributes (e.g., "the smaller gray object"). Third, this phrase is modified to
refer to a non-existent object (e.g., "the larger gray object"). Finally, a question
is generated about a third attribute of the non-existent object (e.g., "What is
the shape of the larger gray object?"). At test time, presenting the image and
question together creates a GeometricConflict .

SemanticConflict involves an erroneously classified image, as shown in Fig. 2h.
To be specific, a question about the wrong class (e.g ., “kiwi") should be an-
swered according to the given image (e.g ., “ostrich"). The generation process
of SemanticConflict is based on the ImageNet dataset [10]. First, we generate
some questions about a label and retrieve images according to that label in the
ImageNet dataset. Second, we substitute the correct label in the questions with
some similar but different objects. At test time, combining the image and the
substituted question will create a conflict.

SemanticConflict

Substitute object: Ostrich to Kiwi

Question: Does the picture depict the kiwi’s size?
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4 Approach

In this section, we delve into our exploration using in-context learning techniques,
detailed in Section 4.1. Through experiments across various Large Multimodal
Models (LMMs), we’ve pinpointed a crucial challenge where LMMs struggle to
detect instruction conflicts. Additionally, we introduce our proposed Cognitive
Awakening Prompting (CaP) approach, outlined in Section 4.2.

4.1 In-Context Learning

We study three in-context learning techniques in SCI, including few-shot prompt-
ing [5], zero-shot chain-of-thoughts prompting [18], and self-consistency prompt-
ing [42]. Although few-shot prompting has been widely used in Large Language
Models, its application in Large Multimodal Models (LMMs) remains limited.
Recent research highlights challenges such as LMMs’ inability to support multi-
ple image inputs or comprehend sophisticated few-shot prompts [17,50]. Conse-
quently, few-shot prompting is primarily employed within the language-language
paradigm. Here, we detail the application of these prompting techniques in our
SCI.

Zero-shot Prompting refers to the ability of the model to perform a task with-
out providing examples of how to perform a task correctly. We task the model
with generating responses in SCI solely based on its general knowledge and
understanding of language and vision. This capability underscores the model’s
innate capacity to detect self-contradictory conflicts.

Zero-shot Chain-of-thoughts Prompting [46] (CoT) involves appending text
like “Please think step by step” to user prompts, proven to enhance LMMs’
inference ability. In our experiment, we incorporate this text into the prompt.

Self-consistency Prompting [42] (SC) involves sampling multiple reasoning
paths and selecting the most consistent answers. In this paper, we generate
three replies for each instruction (3-SC) and determine the final result through
majority voting.

4.2 Cognitive Awakening Prompting

Our initial exploration reveals an intriguing phenomenon: the performance or-
der in vision-language tasks is 0-Shot, CoT, and 3-SC across diverse LMMs,
shown in the Appendix. While 3-SC provides additional experience through
more attempts, CoT offers extra knowledge by stimulating reasoning capabilities
through a chain of thought. However, neither surpasses the simplicity of zero-
shot prompting, suggesting that both additional experience and extra knowledge
derived from the model itself may be counterproductive. We hypothesize that
the LMMs may not fully grasp restricted cognition in the self-contradictory in-
struction scenarios.

Therefore, we propose a plug-and-play prompting approach to infuse cog-
nition from the external world: Cognitive Awakening Prompting (CaP). The
externally added cognition prompt reminds LMMs of potential inconsistencies
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hidden in their cognition, e.g ., adding “Please be careful as there may be incon-
sistency in user input. Feel free to point it out." at the end of the prompt. The
injected cognition does not impair the basic functioning of LMMs but fosters self-
awareness of internal information and knowledge defects. Detailed experiments
are presented in Section 5.3.

While CaP stems from observation and analysis in vision-language tasks, it
also demonstrates promise in language-language tasks, outperforming 3-Shot in
over half of LMMs. Generally, the 3-Shot provides extra information since more
question-answer pairs are provided. This underscores that cognition represents
a higher level of existence than experience, information, and knowledge. CaP
embodies a prompting technique standing on the cognition dimension, enabling
the identification of LMMs’ shortcomings and exploration of profound issues.
Detailed experiments are outlined in Section 5.2.

5 Experiments

In this section, we begin with the experimental settings and introduce the Large
Multimodal Models (LMMs), metric, and evaluation in Section 5.1. Furthermore,
we assess the capacity of various large multimodal models (LMMs) to detect
self-contradictory instructions in SCI for language-language (L-L) and vision-
language (V-L) tasks, in Section 5.2 and Section 5.3 respectively.

5.1 Experimental Settings

Large Multimodal Models including 11 types are experimented on SCI to assess
how well LMMs can detect self-contradictory instructions. To elaborate, L-L
conflicts are experimented on ChatGLM [51], ChatGPT [30], GPT-4 [32], Llama
2 [28], and GLM-4 [52]. V-L conflicts are experimented on GPT-4V [32], LLaVA-
1.5 [25], Gemini [12], LLaMA-Adapter V2 [11], BLIP-2 [20], and SPHINX-v2 [22].

Table 2: Evaluation of LLM agents aligns with human experts. Spearman
correlation coefficient and Concordance rate are calculated between the evaluation
results of the LLM agents and the human experts on vision-language conflicts.

Reply LMM Spearman’s ρ Concordance

GPT-4V 0.881 94%
LLaVA-1.5 0.999 99%

Gemini 0.854 97%

Metric in our experiment is the hit ratio, which is defined as the proportion of
the conflict-aware replies with the total replies. To calculate the hit ratio, each
reply generated by LMM will be evaluated to determine whether it successfully
identifies the conflict hidden in the user’s input.
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Evaluation is first conducted by human experts who can provide the most accu-
rate evaluation. However, it is prohibitively costly to evaluate data manually in
large-scale experiments. Employing LLMs as an evaluation agent offers a more
efficient and cost-effective alternative. An experiment further demonstrates that
LLMs as evaluation agents align with human experts, shown in Table 2. In our
experiment, a uniform prompt for all tasks is designed to prompt LLMs as eval-
uation agents. Initially, a set of replies generated by LMM on SCI-Core was
collected. These replies were then evaluated by both human experts and GPT-
4 [32]. Spearman correlation coefficient and concordance rate are calculated to
measure the evaluation consistency between humans and LLM. As recorded in
Table 2, GPT-4 demonstrates a close alignment to human evaluative standards.

Table 3: Our CaP significantly improves the performance of detecting in-
struction conflicts on SCI. Scores in the table are hit ratios evaluated by ChatGPT.
The higher, the better. * means tested on SCI-Base introduced in Section 3.2.

Model RuleConflict AttributeConflict ExclusionConflict ForbbidenConflict Total

ChatGLM 21.9% 9.0% 9.9% 27.6% 17.1%
+ CoT 38.9% 11.4% 5.8% 42.6% 24.7%
+ 3-Shot 48.4% 9.1% 17.9% 95.2% 42.6%
+ CaP 69.1% 70.2% 17.0% 48.1% 51.1%

ChatGPT 35.7% 13.4% 4.4% 1.8% 13.8%
+ CoT 36.9% 25.0% 10.4% 2.1% 18.6%
+ 3-Shot 71.4% 22.4% 28.8% 4.5% 31.8%
+ CaP 80.9% 66.6% 11.6% 1.8% 40.2%

GLM-4 31.1% 33.0% 20.6% 52.0% 34.2%
+ CoT 33.4% 49.3% 25.4% 53.0% 40.3%
+ 3-Shot 50.8% 45.9% 52.8% 67.3% 54.2%
+ CaP 49.8% 84.4% 54.5% 83.9% 68.1%

Llama2 46.6% 26.9% 8.4% 21.2% 25.8%
+ CoT 44.8% 29.7% 8.0% 18.5% 25.2%
+ 3-Shot 17.8% 75.8% 31.8% 52.2% 44.4%
+ CaP 67.8% 43.8% 6.7% 19.4% 34.4%

GPT-4∗ 28.4% 26.8% 13.2% 42.0% 27.6%
+ CoT 25.6% 40.0% 29.2% 90.4% 46.3%
+ 3-Shot 90.0% 68.0% 70.8% 98.4% 81.8%
+ CaP 74.4% 96.0% 26.0% 91.6% 72.0%

5.2 Language-Language Conflict

We experiment with ChatGPT, ChatGLM, GLM-4, and Llama2-7b-chat on the
SCI, while GPT-4 is tested on SCI-Base, as introduced in Section 3.2. For
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prompt setting, we apply zero-shot, chain-of-thoughts, few-shot, and cognitive
awakening prompting in experiments on language-language conflict.

Table 3 demonstrates the performance of an LMM under different prompt
settings. Existing LMMs perform poorly in handling language-language conflicts.
However, in-context learning techniques can improve the performance of LMMs
to a different extent. Chain-of-thoughts prompting offers a relatively modest in-
crease in the hit ratio, approximately by a factor of 1.5. This relatively moderate
improvement of chain-of-thoughts prompting may result from the fact that it can
be counted as part of the conflicting instructions, thus failing to fully elicit the
reasoning ability of LMMs. Few-shot and our CaP prompting can significantly
improve LMM’s overall hit ratio, approximately doubling or tripling their per-
formance. This may be due to the external message that reminds LMMs of the
potential existence of conflicts. In practice, few-shot and CaP can be combined
to further improve LMMs’ awareness of dissonance.

It’s also noteworthy that different tasks vary in difficulty. Specifically, Ex-
clusionConflict seems to be more challenging to most LMMs, showing LMMs’
inability to understand the exclusion of two instructions. RuleConflict and At-
tributeConflict are relatively easier for LMMs and that may result from the
powerful information retrieval ability of LMMs. LMMs’ performances vary on
ForbbidenConflict , while GPT-4 achieves a hit ratio of 98.4%, ChatGPT only
achieves 4.5%. This might be due to the difference in their training data.

Table 4: GPT-4V outperforms other LMMs greatly in all tasks on SCI-
Core. LLaMA-A2 represents the LLaMA-Adapter V2. The replies are evaluated by
human experts for more precise results.

Model OCRConflict FigureConflict GeometricConflict SemanticConflict Total

BLIP-2 0.0% 0.0% 0.0% 0.0% 0.0%
LLaMA-A2 0.0% 0.0% 0.0% 0.0% 0.0%
LLaVA-1.5 0.0% 0.0% 0.0% 0.0% 0.0%
SPHINX-v2 0.0% 0.0% 0.0% 2.0% 1.0%

Gemini 6.7% 0.0% 0.0% 20.0% 11.0%
GPT-4V 80.0% 33.3% 40.0% 68.0% 59.0%

5.3 Vision-Language Conflict

We experiment with GPT-4V, LLaVA-1.5 (with 8-bit approximation), and Gem-
ini 5, LLaMA-Adapter V2 (BIAS-7B), BLIP-2 (FlanT5XXL), and SPHINX-v2
on SCI-Core using basic zero-shot prompting. As evident from Table 4, GPT-
4V outperforms other LMMs greatly in all 4 tasks. Even SPHINX performs mis-
erably, a rather large open-source model. Gemini shows a slightly better result
5 The experiments utilize the website version of Gemini.
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but the overall performance is still poor. This proves current LMMs’ inability to
detect self-contradictory instructions. Considering the unparalleled advantage of
GPT-4V, we reckon the simple design of current open-source LMMs cannot han-
dle self-contradictory instructions correctly even with LLMs, and more advanced
architecture is a must to handle such a challenge.

It is also noteworthy that OCRConflict and SemanticConflict are relatively
easy for GPT-4V and Gemini to perform, while FigureConflict and Geometric-
Conflict exhibit the greatest difficulty. This demonstrates that current LLMs
still struggle with interpreting figures and performing spatial reasoning tasks.

We further the experiment to explore whether in-context learning can im-
prove performance. Due to the current limitations of vision-language models, it
is typically not recommended to apply few-shot learning in this setting as we’ve
discussed in Section 4.1. We simply apply plain zero-shot prompting, zero-shot
chain-of-thoughts prompting [18], self-consistency prompting [42], and cognitive
awakening prompting.

BLIP-2 LLaMA-Adapter V2 LLaVA-1.5 SPHINX-v2 GPT-4V
Model
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20

30

40

50

60

70
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it 
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tio

0.0% 0.0% 0.0%0.0% 0.0%0.0% 0.0%0.0% 0.0%

Zero-shot
Chain-of-thoughts

Self-consistency
Ours

Fig. 4: CaP improves LMMs’ performance greatly on SCI-Core. Chain-
of-thoughts and self-consistency prompting bring limited improvement. Replies are
evaluated by human experts for more precise results.

Fig. 4 shows that CaP greatly enhances LMMs’ performance. This is most
evident in SPHINX-v2, where CaP raises its hit ratio from a poor 1.0% to a com-
mendable 12.0%. This improvement applies to LLaVA-1.5 and GPT-4V where
CaP constantly outperforms in-context learning skills like chain-of-thoughts
and self-consistency, showing the indisputable superiority of CaP. BLIP-2 and
LLaMA-Adapter V2 cannot detect any self-contradictory instruction no matter
the in-context learning skills we apply, and we reckon that the base LLMs they
use may not be powerful enough to handle such a challenging problem (FlanT5
and LLaMA-7b respectively). Unlike in the language-language setting, chain-of-
thoughts prompting only brings limited improvement on LLaVA-1.5 and even
a negative effect on GPT-4V’s performance. Self-consistency prompting, as an
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improved version of chain-of-thoughts prompting, shows a similar but slightly
more satisfying result than CoT prompting.

It is also worth mentioning that, in our self-contradictory setting, these in-
context learning skills sometimes fail to achieve the originally expected result,
which could be the reason why they fail to improve performance on SCI. For
example, “Please think step by step” is meant to elicit a chain of LMM thoughts
but is sometimes deemed as a normal context to be translated, paraphrased, and
summarized in OCRConflict .

Finally, CaP is harmless since it serves as an additional module for conflict
detection. If it detects conflicts, it can ask the user to check input. Otherwise,
the original task will proceed as usual. We conduct experiments on two non-
conflict datasets to prove that SCI will not lead to misjudgment in normal
cases, MMMU [49] by LLaMa-Adapter-V2 [11] and MMLU [15] by GPT-4 [32].
We find that only 1.38% replies mistakenly mentioned a conflict on the MMMU
benchmark (1.11% on the MMLU).

6 Conclusion

We introduce the Self-Contradictory Instructions (SCI) benchmark, comprising
20,000 conflicts distributed between language and vision domains. This bench-
mark aims to evaluate Large Multimodal Models (LMMs) regarding their abil-
ity to detect conflicting commands. Our innovative automatic dataset creation
framework, AutoCreate, facilitates this process and encompasses a wide range
of instruction complexities. Our evaluation reveals current LMMs’ consistent
struggle to identify instruction conflicts. Hence, we propose a novel approach,
Cognitive Awakening Prompting (CaP), to inject cognition from the external
world, leading to a substantial improvement in dissonance detection.

Social Impact Our work on the SCI benchmark, along with the AutoCreate
framework and CaP approach, has significant social implications. It provides re-
searchers and practitioners with a standardized platform to assess and enhance
LMMs’ ability to navigate conflicting instructions, advancing human-computer
interaction and communication technologies. The AutoCreate framework fa-
cilitates the creation of diverse instruction datasets, promoting inclusivity in
AI research. Additionally, the CaP approach integrates external cognition into
multimodal models, enhancing context-aware understanding. By improving dis-
sonance detection, our approach boosts LMM performance and fosters trust and
reliability in AI systems, essential for societal integration.

Limitations To begin with, we only include language-language and vision-language
paradigms. More modalities will be included in our SCI benchmark based on
our automatic framework, AutoCreate. Besides, no fine-grained control is in-
troduced to determine the conflict degree. Finally, we do not provide a detailed
study on the attention mechanism of large multimodal models when confronted
with conflict instructions.



Self-Contradictory Instructions (SCI) 15

Acknowledgements

This research is supported by the Key R&D Program of Shandong Province,
China (2023CXGC010112). We express our gratitude to the funding agency for
their support.

References

1. Anthropic: Claude-3. https://www.anthropic.com/news/claude- 3- family
(2024)

2. Anthropic: Claude 3 is demonstrating a level of ’meta-awareness’ the devel-
opers have never seen before. https://twitter.com/alexalbert__/status/
1764722513014329620 (2024)

3. Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D.,
Fort, S., Ganguli, D., Henighan, T., et al.: Training a helpful and harmless assistant
with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862
(2022)

4. Bengio, Y., Hinton, G., Yao, A., Song, D., Abbeel, P., Harari, Y.N., Zhang, Y.Q.,
Xue, L., Shalev-Shwartz, S., Hadfield, G., et al.: Managing ai risks in an era of
rapid progress. arXiv preprint arXiv:2310.17688 (2023)

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

6. Cao, Z., Yang, Y., Zhao, H.: Autohall: Automated hallucination dataset generation
for large language models. arXiv preprint arXiv:2310.00259 (2023)

7. Chen, H.T., Zhang, M.J., Choi, E.: Rich knowledge sources bring complex knowl-
edge conflicts: Recalibrating models to reflect conflicting evidence. arXiv preprint
arXiv:2210.13701 (2022)

8. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences. Advances in neural information
processing systems 30 (2017)

9. Cotra, A.: Why ai alignment could be hard with modern deep learning. Cold Takes
(2021)

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

11. Gao, P., Han, J., Zhang, R., Lin, Z., Geng, S., Zhou, A., Zhang, W., Lu, P., He,
C., Yue, X., et al.: Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010 (2023)

12. Gemini Team, G.: Gemini: A family of highly capable multimodal models (2024)
13. Glaese, A., McAleese, N., Trębacz, M., Aslanides, J., Firoiu, V., Ewalds, T., Rauh,

M., Weidinger, L., Chadwick, M., Thacker, P., et al.: Improving alignment of di-
alogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375
(2022)

14. Gulcehre, C., Paine, T.L., Srinivasan, S., Konyushkova, K., Weerts, L., Sharma, A.,
Siddhant, A., Ahern, A., Wang, M., Gu, C., et al.: Reinforced self-training (rest)
for language modeling. arXiv preprint arXiv:2308.08998 (2023)

15. Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., Stein-
hardt, J.: Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300 (2020)

https://www.anthropic.com/news/claude-3-family
https://twitter.com/alexalbert__/status/1764722513014329620
https://twitter.com/alexalbert__/status/1764722513014329620


16 J. Gao et al.

16. Hu, Y., Liu, B., Kasai, J., Wang, Y., Ostendorf, M., Krishna, R., Smith, N.A.:
Tifa: Accurate and interpretable text-to-image faithfulness evaluation with ques-
tion answering. arXiv preprint arXiv:2303.11897 (2023)

17. Jiao, Q., Chen, D., Huang, Y., Li, Y., Shen, Y.: Enhancing multimodal large lan-
guage models with vision detection models: An empirical study (2024)

18. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models
are zero-shot reasoners. In: Advances in Neural Information Processing Systems.
vol. 35, pp. 22199–22213 (2022)

19. Lee, N., Ping, W., Xu, P., Patwary, M., Fung, P.N., Shoeybi, M., Catanzaro, B.:
Factuality enhanced language models for open-ended text generation. Advances in
Neural Information Processing Systems 35, 34586–34599 (2022)

20. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023)

21. Li, J., Cheng, X., Zhao, W.X., Nie, J.Y., Wen, J.R.: Halueval: A large-scale
hallucination evaluation benchmark for large language models. arXiv preprint
arXiv:2305.11747 (2023)

22. Lin, Z., Liu, C., Zhang, R., Gao, P., Qiu, L., Xiao, H., Qiu, H., Lin, C., Shao, W.,
Chen, K., et al.: Sphinx: The joint mixing of weights, tasks, and visual embeddings
for multi-modal large language models. arXiv preprint arXiv:2311.07575 (2023)

23. Liu, F., Guan, T., Li, Z., Chen, L., Yacoob, Y., Manocha, D., Zhou, T.: Hallu-
sionbench: You see what you think? or you think what you see? an image-context
reasoning benchmark challenging for gpt-4v (ision), llava-1.5, and other multi-
modality models. arXiv preprint arXiv:2310.14566 (2023)

24. Liu, F., Lin, K., Li, L., Wang, J., Yacoob, Y., Wang, L.: Aligning large multi-modal
model with robust instruction tuning. arXiv preprint arXiv:2306.14565 (2023)

25. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning
(2023)

26. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint
arXiv:2304.08485 (2023)

27. Manyika, J.: An overview of bard: an early experiment with generative ai. AI.
Google Static Documents (2023)

28. Meta: Llama 2 (13B Chat Version) [Large Language Model]. https : / /
huggingface.co/meta-llama/Llama-2-13b-chat-hf (2023)

29. Morris, M.R., Sohl-dickstein, J., Fiedel, N., Warkentin, T., Dafoe, A., Faust, A.,
Farabet, C., Legg, S.: Levels of agi: Operationalizing progress on the path to agi.
arXiv preprint arXiv:2311.02462 (2023)

30. OpenAI: ChatGPT (3.5 Turbo Version) [Large Language Model]. https://chat.
openai.com (2023)

31. OpenAI: Dall-e-3 [Text-to-Image Model]. https://openai.com/dall-e-3 (2023)
32. OpenAI: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
33. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,

Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing Systems
35, 27730–27744 (2022)

34. Padmanabhan, S., Onoe, Y., Zhang, M.J., Durrett, G., Choi, E.: Propagating
knowledge updates to lms through distillation. arXiv preprint arXiv:2306.09306
(2023)

35. Pan, X., Yao, W., Zhang, H., Yu, D., Yu, D., Chen, J.: Knowledge-in-
context: Towards knowledgeable semi-parametric language models. arXiv preprint
arXiv:2210.16433 (2022)

https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://chat.openai.com
https://chat.openai.com
https://openai.com/dall-e-3


Self-Contradictory Instructions (SCI) 17
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